
Database Performance

H o w t o o b t a i n r e a s o n a b l e p e r f o r m a n c e w i t h a r e m o t e d a t a b a s e a n d A c c e s s c l i e n t

Using a Remote Backend

Jack D. Leach
jleach@dymeng.com

Access Lunchtime, November 27th, 2018

01. Getting Grounded: WANs, ODBC & RBAR

I N D E X

02. ODBC as a Translator

03. Understanding our Data Usage

04. Working with the Data

05. Additional Considerations & Ideas

WANs, ODBC and RBAR

Getting GROUNDED
01

Recognizing the Bottlenecks
WANs, ODBC and RBAR

4DYMENG SERVICES – JACK D. LEACH

Wide Area Networks

Fundamental basis of remote performance issues

We have little to no control over this

Reference Albert Kallal’s classic: http://www.kallal.ca/wan/wans.html

Round-trip Communications

10-100x SLOWER than LAN!

Every request to the database
makes at least one round trip

http://www.kallal.ca/wan/wans.html

Recognizing the Bottlenecks
WANs, ODBC and RBAR

5DYMENG SERVICES – JACK D. LEACH

ODBC

Open Database Connectivity

Many implementations – ODBC is a standard, not a tool

At its basic level, acts as a translator between SQL dialects

At its fully functional level, acts as a contract per your requests

Many available – prefer SQL Server Native Client driver for Azure

Different ODBC Drivers may impact performance

Recognizing the Bottlenecks
WANs, ODBC and RBAR

6DYMENG SERVICES – JACK D. LEACH

RBAR

Row By Agonizing Row

SQL/SQL Server is a Set-Based language/server

SQL operations are optimized to act on sets of data at a time, not single rows

Given certain requests, the database engine may have to drop into “single row”
processing mode (i.e. – Cursor-Based processing). This is extremely inefficient!

Move the whole crate at once,
not one blueberry at a time!

A peek into the black box

ODBC as a Translator
02

ODBC as a Translator
Bridging the Gap between SQL Dialects

8DYMENG SERVICES – JACK D. LEACH

JET/ACE SQL and T-SQL (SQL Server) have different dialects

ODBC acts as a translator between the dialects

ODBC as a Translator
Bridging the Gap between SQL Dialects

9DYMENG SERVICES – JACK D. LEACH

SELECT
ID,
CustomerName

FROM Customers
WHERE CustomerName = “ACME”

SELECT
ID,
CustomerName

FROM Customers
WHERE CustomerName = ‘ACME’

JET/ACE Dialect T-SQL Dialect

Minor Transformations

A Simple SQL Statement and Easy ODBC Translation

ODBC as a Translator
Bridging the Gap between SQL Dialects

10DYMENG SERVICES – JACK D. LEACH

SELECT c.ID, c.CompanyName
FROM (dbo_Companies AS c
LEFT JOIN dbo_CompanyLocations AS cl
ON c.ID = cl.CompanyID)

INNER JOIN dbo_CompanyClients AS cc
ON c.ID = cc.CompanyID

WHERE cl.CompanyID IS NULL
GROUP BY c.ID, c.CompanyName
HAVING COUNT(*) > 5;

JET/ACE Dialect T-SQL Dialect

SELECT c.ID, c.CompanyName
FROM dbo.Companies AS c
LEFT JOIN dbo.CompanyLocations AS cl
ON c.ID = cl.CompanyID

INNER JOIN dbo.CompanyClients AS cc
ON c.ID = cc.CompanyID

WHERE cl.CompanyID IS NULL
GROUP BY c.ID, c.CompanyName
HAVING COUNT(*) > 5;

Slightly more complex, but still very easy for ODBC to translate

ODBC as a Translator
Bridging the Gap between SQL Dialects

11DYMENG SERVICES – JACK D. LEACH

SELECT ID, CompanyName
FROM dbo_Companies
WHERE NZ(CompanyName, “”) = “MyComp”;

JET/ACE Dialect T-SQL Dialect

SELECT ID, CompanyName
FROM dbo.Companies
WHERE ?????????

Very simple for us, very difficult for ODBC!

ODBC doesn’t understand the NZ() function, and thus can’t convert it

ODBC resolves this by fetching the entire table and processing the criteria locally

ODBC as a Translator
Bridging the Gap between SQL Dialects

12DYMENG SERVICES – JACK D. LEACH

SELECT ID, Nz(CompanyName, “”)
FROM dbo_Companies
WHERE CompanyName = “MyComp”;

JET/ACE Dialect T-SQL Dialect

SELECT ID, CompanyName
FROM dbo.Companies
WHERE CompanyName = “MyComp”

ODBC convert NZ() within the SELECT, but can still return a restricted set

The NZ() from the SELECT statement can be done locally, after the results back

In Contrast: Sargable vs SELECT Transformations

ODBC as a Translator
Bridging the Gap between SQL Dialects

13DYMENG SERVICES – JACK D. LEACH

SELECT ID, CompanyID, Nz(CompanyName, “”)
FROM Companies AS c
INNER JOIN (
SELECT t.CompanyID, t.ClientName
FROM CompanyClients AS t
WHERE Nz(t.ClientName, “”) = “blah”
AND t.ClientClass = c.Class

) AS cc ON c.PrimaryClient = Nz(cc.ClientName, “”)

JET/ACE Dialect T-SQL Dialect

Ummmm… what?

Invoking RBAR over a WAN

No chance of any direct conversion

ODBC’s has to get us results… but how?

ODBC as a Translator
Bridging the Gap between SQL Dialects

14DYMENG SERVICES – JACK D. LEACH

SELECT ID, CompanyID, Nz(CompanyName, “”)
FROM Companies AS c
INNER JOIN (
SELECT t.CompanyID, t.ClientName
FROM CompanyClients AS t
WHERE Nz(t.ClientName, “”) = “blah”

AND t.ClientClass = c.Class
) AS cc ON c.PrimaryClient = Nz(cc.ClientName, “”)

A Theoretical Worst-Case Scenario

1) Determine that it can’t process the join serverside (unrecognized function)
2) Determine that it can’t process the subquery for the same reason
3) Determine that the subquery is correlated (relies on outer query)
4) Pull the entire Companies table for local processing
5) Selects the first record, attempts to process the subquery
6) Pulls the subquery table for local resolution
7) Resolves the join to see if the record should be included in the query results
8) Repeat steps 5-7 for each record in the original Companies table

RBAR over a WAN

This can be the difference
between a two-second query and

a two-hour (or two-day) query

ODBC as a Translator
Bridging the Gap between SQL Dialects

15DYMENG SERVICES – JACK D. LEACH

Takeaways

Remember: WANs, ODBC & RBAR are the three core performance factors

Always consider what you’re asking your queries to do!

- ODBC’s highest priority is results: performance comes second

- We pay for translation complexity with performance

- JET/ACE and VBA functions should be avoided except in top-level SELECTs

- Normalization has significant impact on efficiency

- Don’t try to know it all: ODBC and DB engines are black boxes to most

Classifying our information to better serve

Understanding our Data Usage
03

Our Data Usage
Classifying our Data

17DYMENG SERVICES – JACK D. LEACH

List Data

Primary Data

Complex Data

Small sets of read-only
data, often used to
supply list sources

Our usual day to day
recordsets. Read-write,
two-way binding

Results of “heavier”
queries: summaries,
reports, etc. Typically
read-only

Our Data Usage
Classifying our Data

18DYMENG SERVICES – JACK D. LEACH

Our Data Usage
Classifying our Data

19DYMENG SERVICES – JACK D. LEACH

Data Source Requirements

- Recurring Order Defs
- Recurring Order Def Detail
- Frequency Dropdown
- Preferred DOW Dropdown
- Billing Profile List
- Service Profile List
- Orders Summary List
- Order Detail
- Order Status List
- Company Branch List

- About 15 different data source requests
- Figure at least one of these will result in a

WAN-RBAR operation
- Figure each data request is a minimum of

1 second
- We can guess at least 10 seconds at best

to open this form (and that’s completely
disregarding the WAN-RBAR)

Our Data Usage
Classifying our Data

20DYMENG SERVICES – JACK D. LEACH

Data Classes

- List Data
- Primary Data
- Complex Data

Data State Classification

- Static Data (rarely changes)
- Dynamic Data (changes often)

Considering these two characteristics for each of our required data sources (and bearing in
mind our WAN-RBAR knowledge), we can weigh the pros and cons of various techniques to

best balance our performance and ease-of-development

Core Techniques

- Caching Data (storing data locally for a session)
- Temp Data (importing for local processing)
- SQL Views/Procedures (letting the server do the work)

Down to the nitty-gritty

Working with the Data
04

Caching Data
Static Data, Locally Available

22DYMENG SERVICES – JACK D. LEACH

Cache data to local tables on application startup

Data transfer “logic” is very simple: no complex queries involved

Cuts out a large amount of round-trip remote data requests

Data classes suitable for caching rarely change

Excellent choice for static, list style and/or read-only data

A surprisingly large amount of records can be transferred in short
timeframes on startup: 10-300k records can often be loaded in seconds

Easy to extend: incremental caching, in-app refresh points, optional refresh
on a single row, etc.

Almost every other development platform/paradigm relies on caching

Caching Data
Static Data, Locally Available

23DYMENG SERVICES – JACK D. LEACH

Important! Avoid Heterogeneous Queries

A heterogeneous query is one that requires a comparison from both the
remote server and the local data source

One may be tempted
to use a frustrated join
to update non-existing

values locally:

INSERT INTO TargetTable
(ID, OtherField)

SELECT s.ID, s.OtherField
FROM SourceTable AS s
LEFT JOIN TargetTable AS t

ON s.ID = t.ID
WHERE t.ID IS NULL;

A heterogeneous
query will cause a

RBAR comparison via
ODBC to resolve.
Use with caution!

Prefer a dual-recordset approach instead: one to read, one to write.
Use a VBA loop to read/write. This seems counterintuitive but tends

to work better as it avoids the heterogeneous query.

Working with Primary Data
Day to Day Recordsets & Detail Edits

24DYMENG SERVICES – JACK D. LEACH

Primary Data is your regular detail form editing type of data

Performance Considerations?

Not much to worry about. Follow basic best practices and this mostly
falls into place without a lot of extra work on our end

Use a “detached” recordset and select only the required record:

Private Sub Form_Load()
Me.RecordSource = “SELECT * FROM Table WHERE ID = ” & Me.OpenArgs

End Sub

Prefer to bind combos/listboxes to local data caches where possible
(Access is very liberal about requerying combo sources…)

Maintain ease-of-use for being bound directly to the source

Working with Complex Data
Utilizing Views and Stored Procedures for read-only data

25DYMENG SERVICES – JACK D. LEACH

Basic Sourcing Concepts:

Leverage server processing
as much as possible

If further local processing is
required, load base data set
from server into temp table,
then process the rest locally
(avoids heterogeneous
queries)

Almost always read-only

Multiple tables, numerous joins,
extensive criteria

Characteristics

Summaries/Dashboards

“Friendly” lists

Common Use Cases

Reporting

Exporting

Working with Complex Data
Utilizing Views and Stored Procedures for read-only data

26DYMENG SERVICES – JACK D. LEACH

A can be considered the SQL Server equivalent to a saved Query in Access

SQL Server View

SQL Server offers extensive native performance tuning for Views

Once created, can be linked to and read like any other table from Access
Although, creating writable Views can be a little tricky

CREATE VIEW dbo.MyCoolView AS
SELECT ThisField, ThatField
FROM dbo.MyTable
WHERE X = Y;

Defined by pretty much any valid SELECT statement
But no sort order allowed, generally speaking

SELECT ThisField, ThatField
FROM dbo_MyCoolView
WHERE Z = A
ORDER BY Q DESC;

View Creation (SQL Server) Usage (Access)

View definition itself cannot be parameterized

Working with Complex Data
Utilizing Views and Stored Procedures for read-only data

27DYMENG SERVICES – JACK D. LEACH

Stored Procedures (aka procs, sprocs, stopro, storp, sp, etc.)

Somewhat akin to writing code in VBA (block instructions)

Can process data and/or return records (or many other things)

Server based, no equivalent in Access

Able to accept parameters (unlike Views)

Returning records is optional: can be used to invoke commands only

CREATE PROCEDURE dbo.MyCoolProc @MyParam INT AS
BEGIN

SELECT * FROM SomeTable WHERE ID = @MyParam
END;

CREATE PROCEDURE dbo.MyCoolProc AS
BEGIN

GRANT EXECUTE ON OBJECT blah TO blah
END;

Working with Complex Data
Utilizing Views and Stored Procedures for read-only data

28DYMENG SERVICES – JACK D. LEACH

Passthrough Queries

Instructs ODBC to ignore the contents of
the query and send directly to the server
without trying to translate (e.g., the query
“passes through” the ODBC driver without
intervention)

Access-specific: change Query Type to
Passthrough and set whether it Returns
Records via the query properties

Must be written in T-SQL, as it received and processed on the server
exactly as written

Working with Complex Data
Utilizing Views and Stored Procedures for read-only data

29DYMENG SERVICES – JACK D. LEACH

Quick Tip for Passthroughs:

Use a VBA function to alter the query as required

Create a “template” passthrough query object. Set the SQL to SELECT 1;

Utilize your VBA function throughout your application

Moving past the basics

More Ideas & Considerations
05

Extra Support with “Database Logic”
Utilizing Metadata on the server

31DYMENG SERVICES – JACK D. LEACH

Utilize metadata on the server to help improve performance

Example: cartesian query based on numbers or dates table

Cartesian query using “baseline” dates table

Query must process all dates in the dates table to procedure its results

By storing a “datum” reference, we can restrict the number of rows to process

Such “datum” reference would be driven by our application logic

Persisted vs. Dynamic Results
Choosing to store calculated data

32DYMENG SERVICES – JACK D. LEACH

Choosing to store low-risk calculated data can improve performance

Example: pricing-in-effect data

A Pricing table could have prices that were in effect as of given dates

Querying “current” values would always get the latest price in effect

However, such queries add complexity

We could generate a static table of currently effective prices

Such table could be regenerated via Stored Procedure

Nightly scheduled task to call the stored procedure

Application function to refresh on-demand if required

Now we have access to the current pricing without having to query it

Database Denormalization
Breaking normalization to improve analytic performance

33DYMENG SERVICES – JACK D. LEACH

Denormalizing our data, we can cut query complexity significantly

Generally only suitable only for analytic (OLAP) type of data

Typically a very poor choice for transactional (OLTP) data

Can reduce our query client complexity significantly

Can regenerate the OLAP datasets on schedule or on demand

Using XML or JSON
Loading data to the server quickly

34DYMENG SERVICES – JACK D. LEACH

Loading data into the server quickly and efficiently

SQL Server has built-in support for processing XML

More recent versions can also similarly process JSON

Inserting bulk data into the server is often a pain point (e.g., uploading csv)

By pushing our client-side data into an XML/JSON format and sending to
the server, we can process large amounts of data quickly

Stored Procedures & Bind Parameters
Improving Execution Plan Performance

35DYMENG SERVICES – JACK D. LEACH

Execution Plans are re-used for queries whose text doesn’t change

Bind Parameters are good habit: more secure than value injection

SELECT ThisField, ThatField
FROM ThisTable
WHERE ID = 5;

SELECT ThisField, ThatField
FROM ThisTable
WHERE ID = 15;

DECLARE @ID INT

SET @ID = 5
SELECT ThisField, ThatField
FROM ThisTable
WHERE ID = @ID;

SET @ID = 15
SELECT ThisField, ThatField
FROM ThisTable
WHERE ID = @ID;

query text changes, separate
execution plan created for each call

query text unchanged: execution plan
re-used for each query

Database Polling & Async Loading
Letting things happen in the background

36DYMENG SERVICES – JACK D. LEACH

Polling the database for changes and loading data in an async manner can
dramatically improve perceived performance

Unfortunately, single-threaded nature of Access means we have to be creative

Utilize a sideload data cache for local tables and a separate polling/update
utility application to separate the processes

https://dymeng.com/async-processing-in-access/

https://dymeng.com/async-processing-in-access/

THANK YOU

Jack D. Leach
jleach@dymeng.com

mailto:jleach@dymeng.com

